在“新冠“疫情爆发的特殊时刻,人们不便到线下金融网点处理所需的业务,因此线上渠道成为了大多数用户的选择。那么在应急时期、用户量、业务量、用户使用时长都爆发增长的情况下,金融类App更需要通过数据驱动进行精准营销提升客户体验、留存率、打开率。
精准营销的核心方法是对数据的分析洞察。通过数据收集、数据分析,精准定位目标用户群、在哪里、做过什么、想要什么。对客户有了全方位的了解之后,才能制定差异化、个性化的营销手段。
通过精准营销,可以提升获客质量。在有限资源的情况下,可实现最大化客户转化,主动避开粗放式营销带来的羊毛党客户群。通过精准营销,还可以提升用户的活跃留存,提升业务转化和提高营收,促进产品功能的迭代优化,实现用户生命周期价值的最大化。
如何寻找用户: 收集数据-搭建用户全维度指标体系-用户分层-用户分群-用户行为预测模型
如何执行营销: 精准客群-适宜渠道-恰当时机-差异化内容-合适形式
如何评估效果: 目标导向评估效果-超链接添加UTM参数
如何打造闭环: 营销效果分析-指导下一轮精准营销
一、寻找用户
在进行用户分群之前,首先要进行数据收集、数据整合、建立用户数据指标体系,常见呈现形式是搭建用户层级宽表。这一环节,在数据存储环境支持的情况下需要丰富底层数据,因后面的应用场景都需要依托于上述数据进行计算、分析、建模。所以在搭建用户层级宽表时需要考虑更全面,也需要在应用的过程中不断进行丰富和迭代。
根据前述底层数据,集成了一份庞大的用户层级宽表。进而,我们需要把用户标签更为具象化,进行用户分群,为精准营销提供客群筛选。可以通过以下三个步骤进行用户分群:用户分层、用户分群、用户价值分群模型。
1、用户分层
分层维度没有统一标准,可以按照 App 产品用户旅程 AARRR 为分层逻辑,也可以按照信用卡办卡、分期等核心业务流程为分层逻辑。如下图示例:
举例:在信用卡 App 营销过程中,基于信用卡用户生命周期的分层,可对应营销的内容。
2、用户分群
用户分群是精细化运营的核心,它是基于用户分层的基础上,从每一层级用户的横向再细分,筛选出共性用户群体。
通常根据以下几类数据再进行细分:
一方数据:企业内部数据、用户行为数据;
二方数据:广告投放数据;
三方数据:行业数据、第三方标签、POI 数据、黑白名单等。
信用卡 App 行为数据,主要关注是否绑卡、是否使用激活、积分兑换,实现其自助渠道缓解人工渠道服务压力的价值。以及用户在 App 上是否进行了消费、分期、申卡等对信用卡主要指标贡献度较高的操作。App 行为数据的核心维度分别是时间、频次、结果:
时间 指某特定行为发生时间及持续时间,
频次 指发生某特定行为的次数和趋势,
结果 是指是否完成体验或交易。不同客群会呈现不一样的特征,可基于业务需求和行为数据统计分析,进行场景化行为数据标签的搭建。
在一方标签数据建立不完善的情况下,为了在营销过程中为进一步提高精准度和营销效果,通常会引入三方数据进行补充。例如,在营销资源与用户进行匹配的环节,为了确认用户偏好,可引入三方的标签数据,针对不同群体分别匹配不同奖励的营销资源。以及,当涉及到适用商户的电子券,在营销过程中可引入三方的 POI 数据,匹配更精准的用户群。
基于以上多方数据,结合常见业务和活动,在用户分层的基础上,运用机器学习聚类模型、RFM模型等对信用卡存量客户画像进行多维度分析,如拆分为:分期、跨境、积分、优惠券、还款、额度等多类客群,便于营销资源调配及客群精准营销。
3、用户行为预测模型
充分利用前期精准营销结果数据、活动参与数据、用户行为数据等,以此为种子,结合用户标签,借助有监督机器学习与深度学习算法预测用户行为,建立 A/B test 对比传统营销方式与机器学习预测效果,并根据实验结果不断迭代优化模型,提高客群精准度及精准营销响应率。
二、执行精准营销
经过上一轮的客群分析之后,筛选出精准客群,为执行营销奠定了基础。再进一步选择推送渠道,在适当的时机,将合适的内容推送出去。下图是营销流程的简单示例:
在信用卡 App 营销过程中,营销资源不仅指奖励利益,App 功能也可作为营销抓手。在这个过程中,同一特征客群,可能感兴趣的资源有多个;而同一营销内容,也可能有多组不同特征客群感兴趣。不同客群与不同营销内容之间,可进行交叉营销。
三、评估营销效果
1、目标导向的归因分析
每次进行精准营销,都有个业务目标。因此,分析营销效果需基于不同的目标导向。若目标是促注册 App,那就需要明确注册客户来源及精准营销带动注册客户的比例。目标是促 App 分期业务办理,那就需要明确营销及响应周期内营销带动与非营销带动的比例。
举例,在促信用卡 App 注册的精准营销过程中,在数据收集不完善的时候,可进行基础维度的监测数据:安排发送量-注册量-绑卡量-参与活动或办理业务量。
可进行全流程维度的监测数据有:安排发送量-成功发送量-短链访问量-应用商店访问量-安装量-注册量-绑卡量-参与活动或办理业务量。
全流程各个环节的数据监控更精准,前提是需完成埋点和数据收集。这期间,整条路径用户信息数据的打通是个关键工作。通过移动广告效果监测平台 Ad Tracking,基于终端信息、环境信息生成点击数据、激活时设备数据,即可实现应用安装前后用户信息匹配。
监控周期可设定为7或14天,不同营销活动的各个批次之间采用统一口径即可对比营销效果。依据经验,通常注册响应率不到1%的营销活动,需要再反向从营销资源、渠道、客群、时机、触点进行调优。
2、渠道效果监控
精准营销附加的超链接,可添加 UTM 参数,通过埋点追踪 UTM 访问数据。UTM 常用的参数有:渠道、媒介、名称、内容、关键字。
通过这5个可添加到链接中的参数,即可通过细分层级,明确用户是从哪一个渠道、媒介(微信/短信/EDM等)、名称、内容、关键字过来的。通过不同渠道的访问-下载-注册-参与/付费数据,可分析不同渠道的质量。通过名称、内容、关键字,可分析出客户对哪类活动感兴趣,这部分数据也是用户标签数据的重要来源之一。
下图为基础的渠道监控表:
四、搭建营销闭环
在精准营销过程中,从最初的筛选精准客群,到选择适宜渠道、恰当时机、差异化内容、合适形式进行投放,再到最后的营销效果监测,数据分析是贯穿始终的基础工作。
精准营销需实现如上图所示的营销闭环。对精准营销效果进行复盘分析,可指导下一轮的精准营销。这对客群标签沉淀、客群模型调优、营销方案迭代、App产品迭代优化、渠道拓展及触点优化、发送时机选择、标准的自动化营销体系的逐步建设,都起着至关重要的作用。
作者:TalkingData 刘亚丽
大数据+物联网,这3个行业的发展可期
场景化时代,金融移动互联网用户的运营该怎么做?
崔晓波:全中国都买同一款产品的时代,已一去不复返返回搜狐,查看更多
责任编辑: